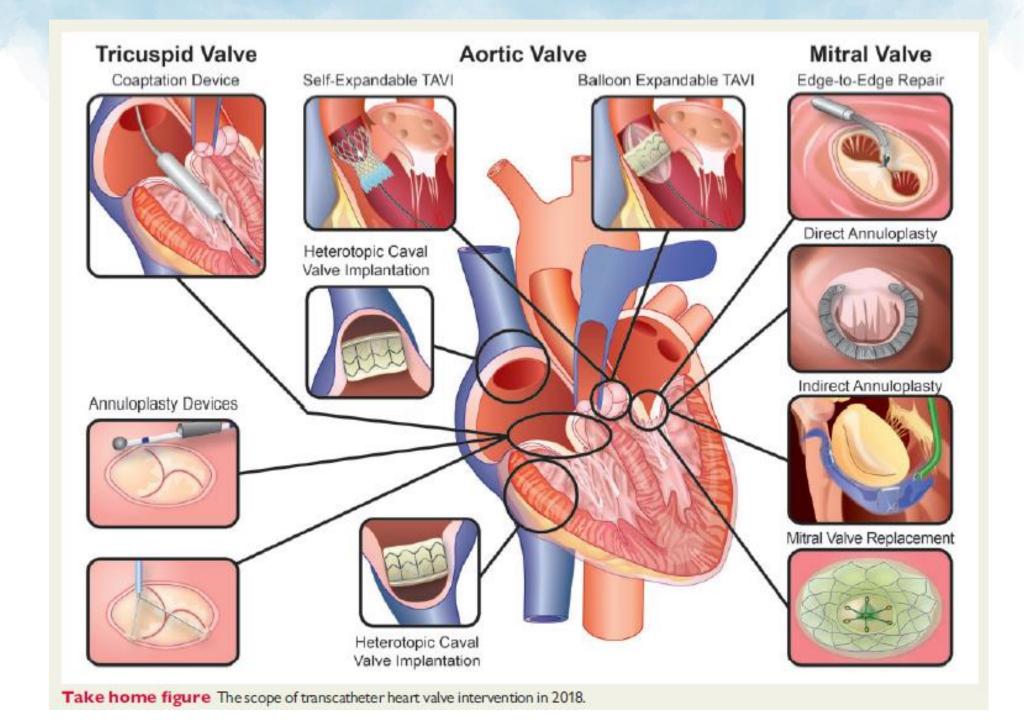


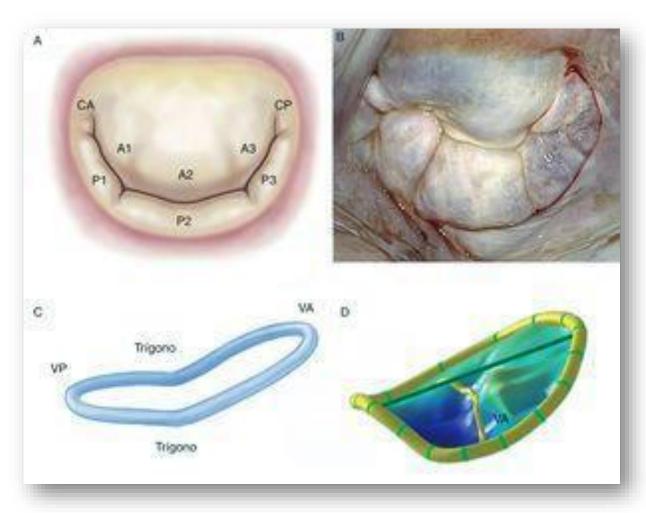
Estrategias intervencionistas para la insuficiencia mitral. Evidencia actual

Dr. Andersen Gustavo

Servicio de cardiología intervencionista de Clínica Bazterrica, Clínica Santa Isabel, Sanatorio Franchin y Sanatorio San José.

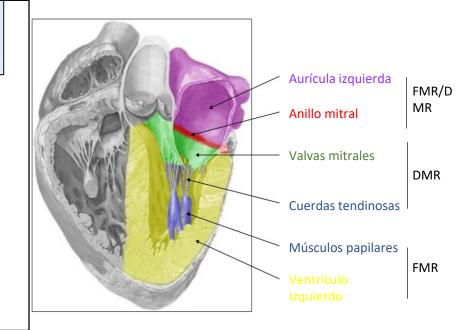
• No tengo conflicto de interés con la presentación.




• Durante la última década, las intervenciones valvulares, que comenzaron con el TAVI, luego el Mitraclip y más recientemente, el reemplazo valvular mitral percutáneo y los procedimientos experimentales de válvula tricúspide, han evidenciado una verdadera revolución.

Anatomía de la válvula mitral

- La válvula Mitral es una estructura anatómica compleja y muy diferente a la válvula aórtica.
- Presenta un anillo asimétrico con forma de D.
- Conformación en silla de montar.
- Aparato subvalvular complejos.
- Valvas de tamaño variable.
- Ausencia de una estructura de anclaje.

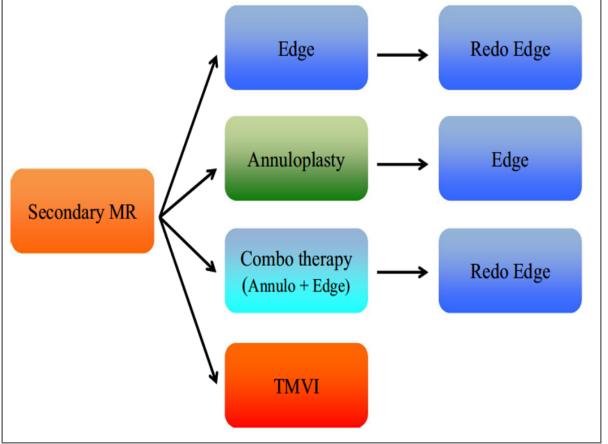

- La IM es una de las enfermedades valvulares más prevalentes.
- La IM severa sintomática no tratada, presenta una mortalidad del 50% a 5 años.

IM primaria o degenerativa (DMR)

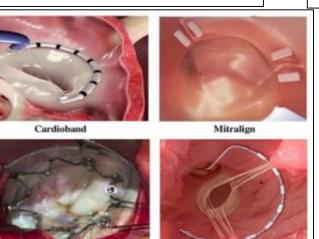
- Enfermedad estructural de las valvas mitrales o del aparato subvalvular.
- El tratamiento quirúrgico es de primera elección en este grupo.
- En los pacientes de alto riesgo, el tratamiento endovascular es de elección.

IM secundaria o funcional (FMR)

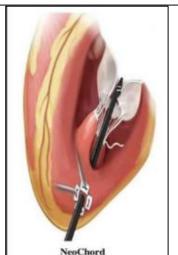

- Es el resultado de un VI enfermo (isquémico o no isquémico) que lleva a la dilatación del mismo y a la restricción del movimiento de las valvas.
- La terapia quirúrgica no ha demostrado ser beneficiosa en términos de pronóstico.



La gran variabilidad de la morfología de la válvula mitral ha conducido el desarrollo continuo de tecnologías para el tratamiento de todo el espectro fisiopatológico de las insuficiencias mitrales.


Accueinch

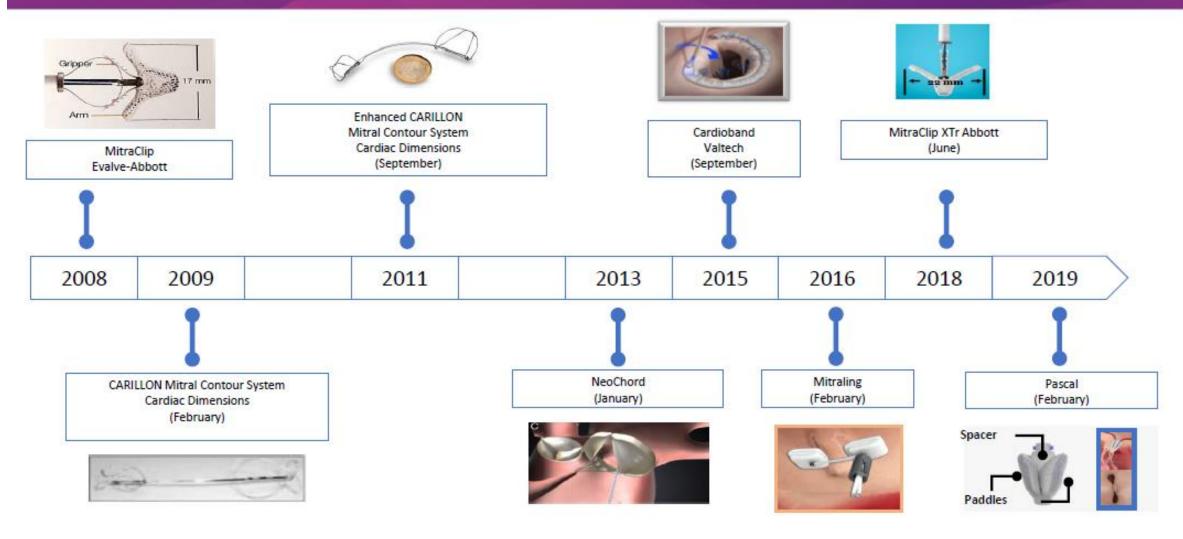
Anuloplastia indirecta



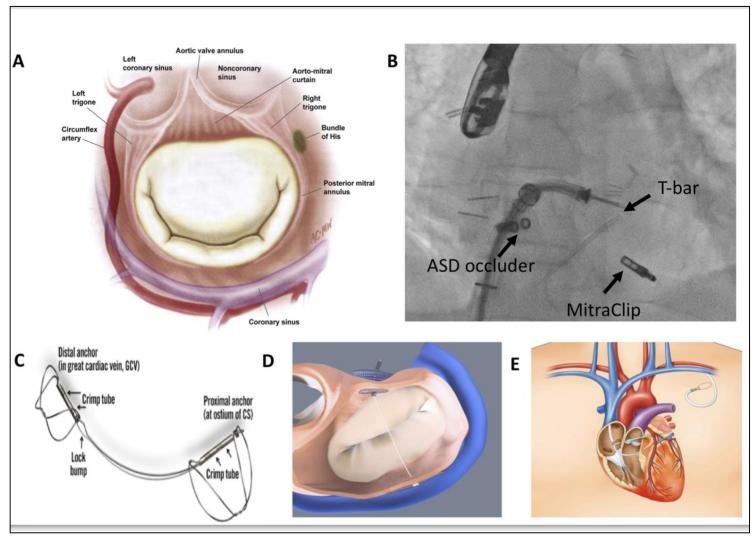
Anuloplastia directa

Millipede

Reemplazo de cuerdas



CE Mark Devices for PMVR



Pilar

Anuloplastía Indirecta

Hay 3 sistemas de anuloplastia indirecta que se están testeando.

- CARILLON (700 casos en el mundo).
- ARTO.
- Mitral Loop Cerclage System.

Anuloplastia directa

Utiliza el Seno Coronario para ejercer una fuerza de restricción sobre el anillo mitral, disminuyendo su diámetro septal-lateral y mejorando la coaptación de las valvas.

Las variaciones anatómicas puede limitar su eficacia.

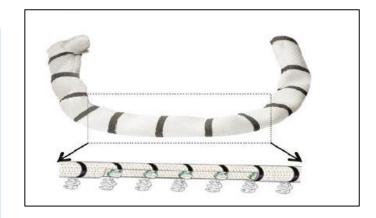
El SC se encuentra superior al anillo mitral en un número significativo de pacientes y a menudo, es más alta en la parte posterior que en la anterior.

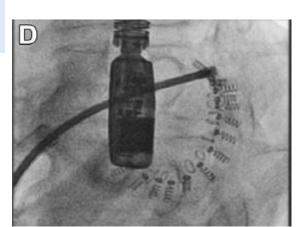
Además, la distancia entre el anillo mitral y el SC tiende a aumentar en pacientes con ventrículos dilatados y MR grave.

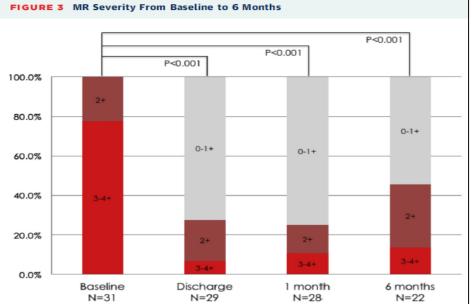
La proximidad de la arteria Circunfleja genera un riesgo teórico de compresión del vaso e infarto asociado a la anuloplastia indirecta.

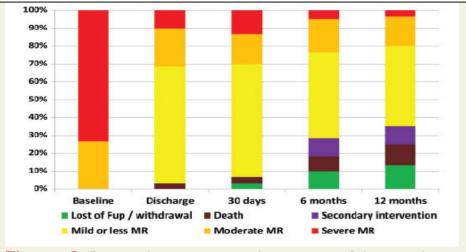
Technique	Device	Indication	Trial & design	Number of patients	Imaging & clinical inclusion criteria	Mean reduction in RV (mL)	CE mark
Indirect annuloplasty	Carillon	Secondary/FMR with annular dilatation	AMADEUS phase I safety trial	48 (30 received device)	Moderate or severe FMR, EF<40%, NYHA class II-IV symptoms	-8.8 (6 months), P < 0.001	YES
			TITAN prospective non-randomized multicentre trial	53 (36 received the device)	Moderate or severe FMR, EF<40%, NYHA class II-IV symptoms despite OHFT, 6-min walk 150-450 m	-17 ± 12 (1 year), P < 0.001	
			REDUCE FMR sham control trial	87 device groups vs. 33 sham procedure	Moderate or severe FMR, EF<50%, NYHA class III-IV symptoms despite OHFT, LVEDD >55 mm	-7.1 vs. + 3.3 controls (1 year), $p = 0.03$	
	ARTO	Secondary/FMR with annular dilatation	MAVERIC phase 1 safety trial	11	Moderate or severe FMR, EF < 40%, LVEDD > 50 mm & ≤75 mm	−25.9 (30-days), p NS	NO
	Mitral Loop Cerclage System	Secondary/FMR with annular dilatation	Phase 1 trial	5	Severe FMR (RV ≥ 30 mL, RF ≥ 50 mL, EROA ≥ 0.20 cm ²), NYHA class III-IV despite OHFT	-36.3 (6 months), p NS	NO

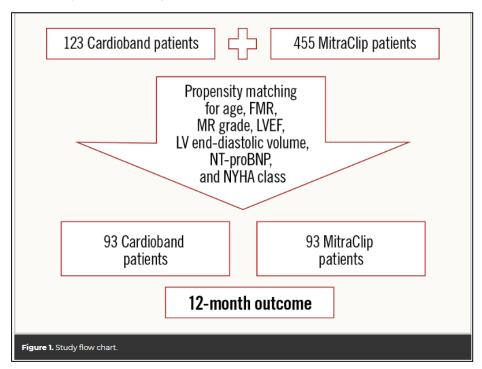
El CARILLON FDA trial (NCT03142152) incuirá 450 ptes, randomizados a Carillon + Tratamiento medico óptimo Vs Tratamiento médico óptimo.

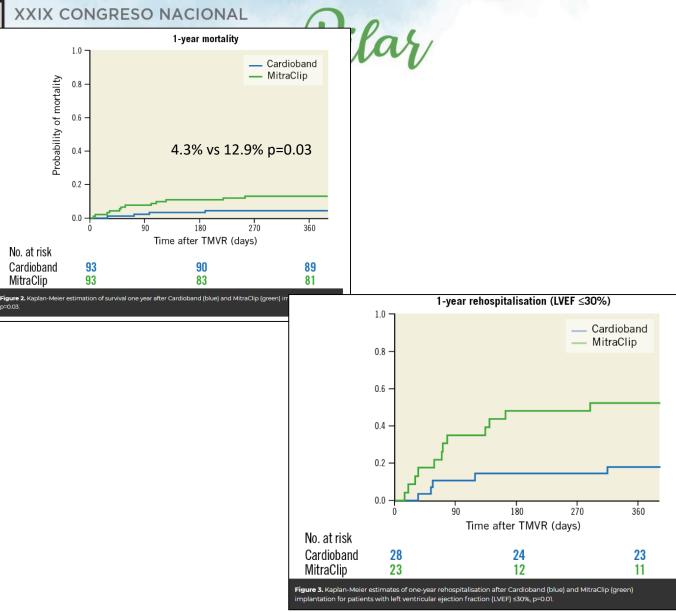



Anuloplastia directa


Hay 3 sistemas de anuloplastia directa que han sido testeados.


- Mitralign (Mitralign Inc., Tewksbury, Massachusetts)
- Accucinch (Guided Delivery Systems, Santa Clara, California).
- Cardioband.

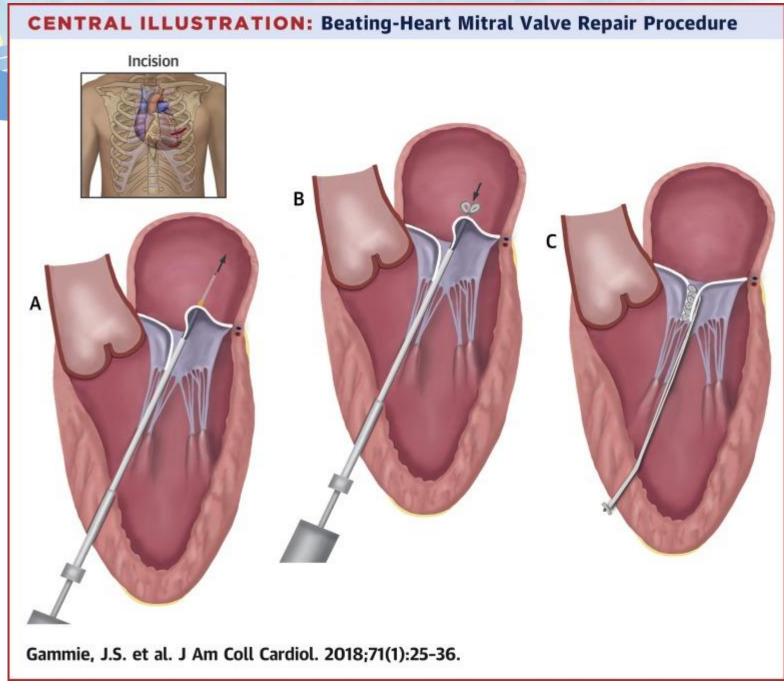

Figure 3 Bar graph representing the percent of the population (n=60) according to degree of mitral regurgitation, death status, and performance of secondary intervention over time.



MITRAL VALVE INTERVENTIONS

Leaflet edge-to-edge treatment versus direct annuloplasty in patients with functional mitral regurgitation

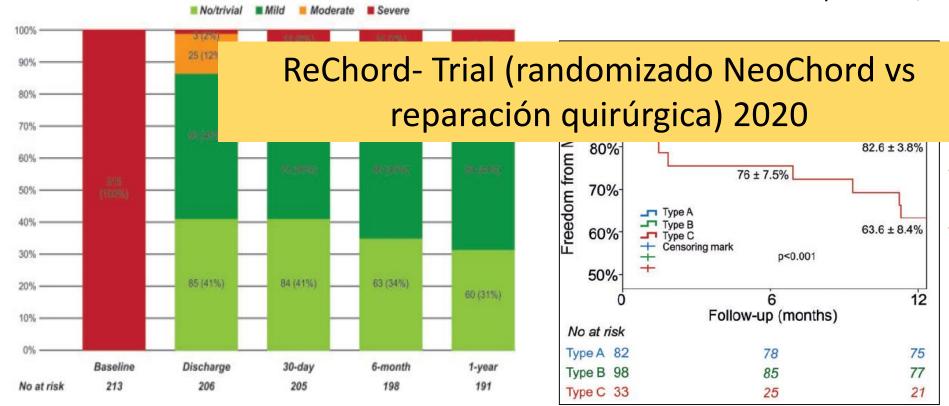
EuroIntervention 2019;15:912-918. DOI: 10.4244/EIJ-D-19-00468



M. Weber et al. EuroIntervention 2019;15:912-918

NeoChord

Implantar una cuerda artificial (de PTFE) a través de un abordaje mínimamente invasivo, en pacientes con MR severa debido al prolapso o flail.



NeoChord

Estudio multicéntrico retrospectivo. 212 ptes. IM Primaria. 7 centros de Europa. 2013/2016. Éxito del 97%

o A: Prolapso/Flail de la ción central de la valva posterior.

Tipo B: Prolapso/flail multisegmento posterior Tipo C: Compromiso de valva anterior, de ambas valvas, calcificación de valvas y/o el anillo.

TMVI

SIMIL TAVI

Existe una estructura de anclaje rígida para la válvula.

- Valve in valve.
- Valve in Ring.
- Valve in MAC.

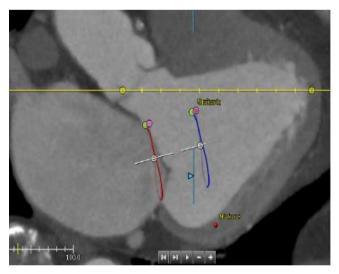
Edwards Sapien ha sido la válvula más utilizada en este grupo de pacientes. La FDA aprobó su utilización en VIV en 6/2017

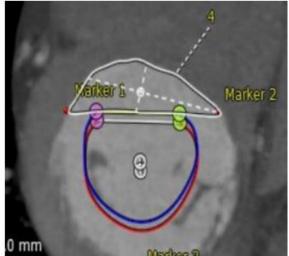
Desarrollos mitrales específicos.

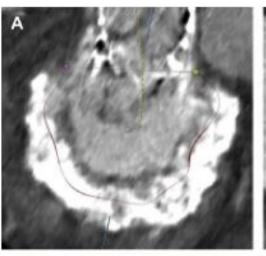
No existe una estructura de anclaje rígida para la válvula. Son válvulas nativas.

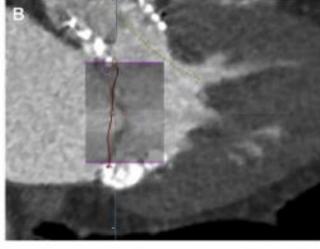
Desarrollos específicos para la válvula mitral, para su utilización transapical o transseptal.

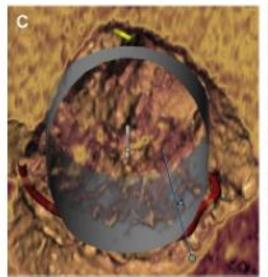
DESAFIOS


- Posicionamiento y fijación.
- Anatomía asimétrica
- Gradiente residual.
- Obstrucción del Tracto de salida del VI
- Leaks paravalvulares.
- Trombosis y AC crónica.
- Durabilidad.



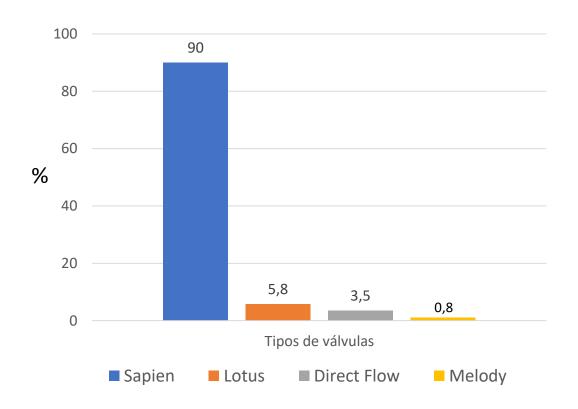



Pilar


- La obstrucción del tracto de salida del VI es la complicación más temida.
- FUNDAMENTAL LA EVALUACIÓN PREVIA CON TCMS Y ETE.
- Un área de 2 Cm2 del TSVI en la mitad de la sístole.
- Alcoholización septal?

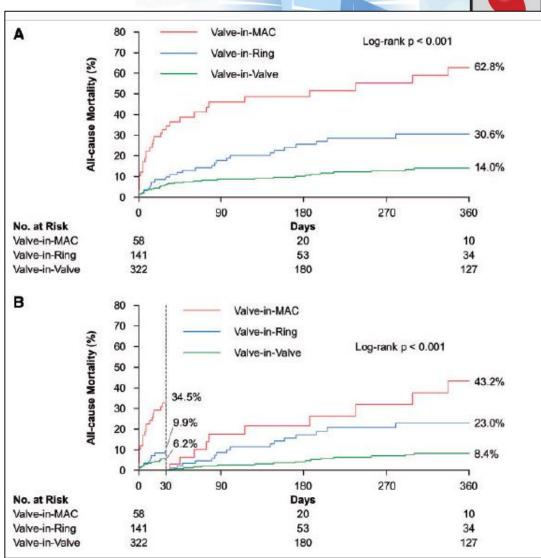


SIMIL TAVI


FASTTRACK CLINICAL RESEAR

Interventional cardio

Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification


Sung-Han Yoon¹, Brian K. Whisenant², Sabine Bleiziffer³, Victoria Delgado⁴, Abhijeet Dhoble⁵, Niklas Schofer⁶, Lena Eschenbach³, Eric Bansal⁷, Dale J. Murdoch⁸, Marco Ancona⁹, Tobias Schmidt¹⁰, Ermela Yzeiraj¹¹, Flavien Vincent¹², Hiroki Niikura¹³, Won-Keun Kim¹⁴, Masahiko Asami¹⁵, Axel Unbehaun¹⁶, Sameer Hirji¹⁷, Buntaro Fujita¹⁸, Miriam Silaschi¹⁹, Gilbert H.L. Tang²⁰, Shingo Kuwata²¹, S. Chiu Wong²², Antonio H. Frangieh²³, Colin M. Barker²⁴, James E. Davies²⁵, Alexander Lauten²⁶, Florian Deuschl⁶, Luis Nombela-Franco²⁷, Rajiv Rampat²⁸, Pedro Felipe Gomes Nicz²⁹, Jean-Bernard Masson³⁰, Harindra C. Wijeysundera³¹, Horst Sievert³², Daniel J. Blackman³³, Enrique Gutierrez-Ibanes³⁴, Daisuke Sugiyama³⁵, Tarun Chakravarty¹, David Hildick-Smith²⁸, Fabio Sandoli de Brito Jr³⁶, Christoph Jensen³⁷, Christian Jung³⁸, Richard W. Smalling⁵, Martin Arnold³⁹, Simon Redwood⁴⁰, Albert Markus Kasel²³, Francesco Maisano²¹, Hendrik Treede¹ Stephan M. Ensminger¹⁸, Saibal Kar¹, Tsuyoshi Kaneko¹⁷, Thomas Pilgrim¹⁵, Paul Sorajja¹³, Eric Van Belle¹², Bernard D. Prendergast⁴⁰, Vinayak Bapat⁴¹, Thomas Modine¹², Joachim Schofer¹¹, Christian Frerker¹⁰, Joerg Kempfert¹⁶, Guilherme F. Attizzani⁷, Azeem Latib⁹, Ulrich Schaefer⁶, John G. Webb⁸, Jeroen J. Bax⁴, and Raj R. Makkar^{1*}

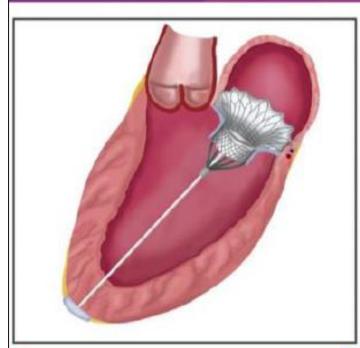
521 ptes. Tratados entre febrero de 2009 y Abril de 2018. Del registro participan 40 centros europeos y americanos.

El TMVR proporcionó excelentes resultados para pacientes con VALVULAS BIOLÓGICAS (VIV) a pesar del alto riesgo quirúrgico. Sin embargo, ViR y ViMAC se asociaron con tasas más elevadas de MACE y mortalidad a medio plazo en comparación con ViV.

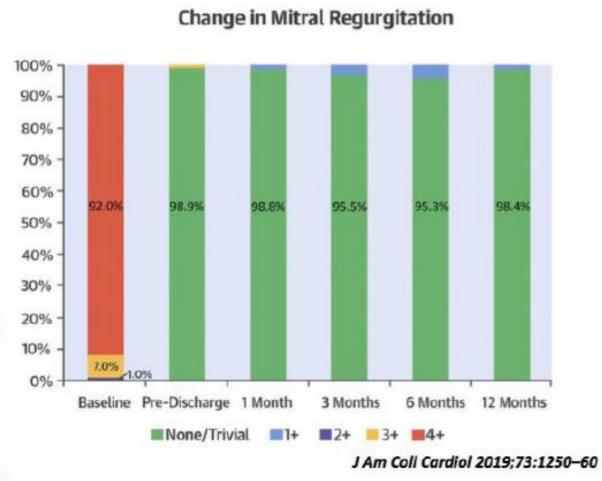
DESARROLLOS MITRALES ESPECÍFICOS

			Selected Mitral Valve Replacement Devices	
Company	Device	Delivery route	Source	Status
Edwards Lifesciences	CardiAQ	Transseptal	CardiAQ acquisition, July 2015	30-patient US trial paused in Feb 2017 to allow more testing of design
Abbott Laboratories	Tendyne	Transapical	Tendyne acquisition, July 2015	110-patient European study ongoing; 1,010- patient US pivotal trial to conclude 2021
Medtronic	Intrepid	Transapical	Twelve acquisition, August 2015	>70-patient European study ongoing; 1,380- patient US pivotal trial, Apollo, to conclude 2021
Neovasc	Tiara	Transapical	In-house	115-patient European trial, Tiara-II, to conclude Jan 2019
Livanova	Caisson	Transseptal	Caisson Interventional acquisition, May 2017	30-patient European trial, Prelude, complete; 75- patient European approval trial, Interlude, ongoing
Abbott Laboratories	Cephea	Transseptal	Cephea Valve Technologies acquisition, January 2019	First-in-human study ongoing
Highlife	HighLife	Transseptal	In-house	European trial imminent; US feasibility trial to start 2019
Cardiovalve	Cardiovalve	Transseptal	In-house	30-patient European trial, Ahead, to conclude in Apr 2019; US feasibility trial, Ahead US, initiated

Techno	logies	Reported Human Experience	
ABT Tendyne	£ (2)	100+	
MDT Intrepid	100	70+	
EW M3 Sapien		10+	
EW CardiAQ		23+	
Neovasc Tiara	W	52+	
Caisson		17+	
HighLife		15+	
Cardiovalve		5+	



TMVR. Experiencias reportadas en humanos.


< de 400 ptes

Tendyne first 100 pts

- No intra-procedural deaths
- Technical success in 96%
- 30-day death, 6%; 1-year mortality, 26%
- Among survivors at 1 year, 88.5% with mild or no symptoms

CONCLUSIONES

- ✓ La complejidad de la VM ha llevado al desarrollo de múltiples tecnologías, de muy variadas características que intentan resolver la IM.
- ✓ La mayoría de estos desarrollos, están en una etapa inicial de su evaluación y debemos ser pacientes.
- ✓ Probablemente ninguna tecnología individualmente "se va a adaptar a todas" las situaciones fisiopatológicas.

Muchas Gracias